当前位置: 首页 > >

哈密顿系统

又称典型系统或正则系统或哈密顿典型系统(方程),常简记为H.S.。在对映射函数适当的要求之下,证明了2维点映射不变闭曲线存在,从而得到太阳系是稳定的结论,这是非常重要的成就。

又称典型系统或正则系统或哈密顿典型系统(方程),常简记为H.S.。指如下形式的一阶微分方程系统

H 中不含t,则(*)称保守系统;此时,

为系统的一个初积分,例如,T为动能,V为势能,则h=T+V=C表能量守恒定律。如H 中含t,取t=qn+1,并取,

(J.-)H.庞加莱曾在他的名著《天体力学新方法》(1892~1899)中暗示许多力学中的微分方程系统都可化成H.S.,但他只举出一些例子,没有证明。后来P.A.M.狄喇克证明下述结果(1935),对庞加莱的暗示作了很好的补充。设有,令即得H.S.:,。因此,研究H.S.理论就是研究一般的一阶正规型微分方程系统,只是引进了余切空间(y1,y2,…,yn)而已。

H=H0(p),即只含p时,称为可积系统。因为,而,从而,当q为角变量时,积分曲线在p=p0环面上。

关于哈密顿系统方程组的解的稳定性理论。是由A.H.柯尔莫哥洛夫,Β.И.阿尔诺德和J.K.莫泽三人共同建立的(1954、1963),因而得名。他们严格证明了拟周期解的存在性,即几乎可积系统,有填满不变环的拟周期解存在。这是哈密顿系统,特别是它的定性理论的近代发展中的最重要的成就。

1889年由庞加莱所开创的哈密顿系统的定性理论中最深刻的结果是限制性三体问题中近圆形轨道的稳定性,这个结果的证明即来自KAM理论,从而使P.-S.拉普拉斯提出的,已历时200年的太阳系稳定性问题得到重要的突破。无论从微分方程方面,或从天体力学方面来看,这都是重大的贡献,得到广泛重视。

KAM理论很复杂,它的思想略述如下。



友情链接: 传奇百科网 招聘百科网 非凡百科网 游艇百科网 口红百科网 创业百科网 软木百科网